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PROBIM DESCRIPTION

ktroducUon

There are many problems of interest to fluid dynarnicists as well as

meteorologists which require a small-scale, or limited area, model of flow and

possibly concomitant transport of energy and species over irregular terrain.

For example stratified flow over hills, or cities, and the associated transport of

pollutants or atmospheric boundary layer studies in which the resolvable hor-

izontal and vertical scales are of the same order of magnitude and the hydros-

tatic approximation is invalid. Considerable progress has been made in

developing numerical techniques to simulate models of stratified flows without

topography but the inclusion of general topographic effects has only recently

received a thorough consideration from a numerical simulation, as well as

operational standpoint, by, for example. Gal-Chen and Somerville (1975), Clark

(1977). Mason and Sykes (1979 a. b). Mahrer and Pielke (1975. 1977) and Hauss-

ling (1977). The latter authors employ a terrain-following coordinate system

which maps the irregular domain into a rectangular domain and then develops

finite difference stencils for the various terms appearing in the transformed

balance equations which must be satisfied by the primitive variables. Many of

the aspects of these modeling efforts are reviewed in Pielke (1981).

The main thrust of our ARO sponsored research effort is the development

and assessment of a primitive variable, non-hydrostatic Galerkin-finite element

* technique which can accommodate general topography, is capable of automati-

* cally generating a spatial discretization which conserves certain global quanti-

ties if desired (Lee, Gresho, Chan, Sani and Culen (1981) ) and is robust enough

to handle very complex flows. We have developed and assessed the potential of

a Galerkin finite element penalty technique for flow and transport problems,

and, I believe, have clearly demonstrated its potential in satisfying the above

IWI*i-. *
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requirements.

BASIC DESCRIPTION OF PROTOTYPE SYSTEM AND TECHNIQUE

In order to simplify the discussion of the important.features of the pro-

posed technique the anelastic model used by Cal-Chan and Somerville (1975)

will be used. (More complicated anelastic models with higher order turbulence

closure schemes are compatible with the technique but of questionable utility

in 3-D simulation on current generation computers.) The basic mathematical

model is:

V. oou) = 0 (1)

V--"r- + v.(pguu) = -Vp + pg + V-r (2)
o8(po o)
,-- + V(pu)= V.H (3)

Here T and H are respectively, the stress tensor and heat flux which, in general,

are nonlinear functions of the local state of the flow. The Coriolis effect has

been neglected but is easily included.

In applying a finite difference (FD) method these equations are usually

transformed to a terrain following coordinate system and a discretized version

is generated. In effecting the latter oftentimes a diagnostic pressure equation

Is generated and also discretized. In many cases the discretized version of the

diagnostic pressure equation is rather complicated and its solution involves

some sort of iteration scheme. One of the interesting features of the penalty

Galerkin-finite element (PGFEM) technique proposed here is that the basic

discretized system is one which only involves nodal velocities and the nodal

pressures are obtained by post-processing of the nodal velocities. The basic

Idea appears to be due to Lions (1972) and belongs to the same family of

slightly compressible approximations first introduced by Chorin (1967) but is

*, not identical and is implemented here in a completely different manner. The

bA
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standard GFE1 approach to anelastic fluid mechanical systems would involve

Interpolating both the velocity and pressure fields and generating nodal equa-

tions as outlined in a subsequent section. In a mixed scheme both nodal pres-

sures and velocities appear as unknowns, not necessarily at each node since it

in necessary to interpolate the pressure field with a lower order polynomial

than the velocity field to obtain a well-posed algebraic problem for the nodal

unknowns. (See, for example, Taylor and Hood. 1973; and Sani. Gresho and Lee

(1980), Sani, Gresho, Lee and Griffiths (1981a), Sani, Gresho, Lee, Griffiths and

Engelman (198 1b).

In order to introduce the proposed penalty GFE, i.e. PGFE, technique one

introduces the following perturbed system.

v .( o) - .(4)
at V- + v .(p u, ) - 2 (PO ,)1 ,

= -VP. + g + V.,r, (5)
+ v - :(PD'2)196 = VA

in which a, the "penalty parameter", appears as a small perturbation parame-

ter. By using the results of Teman (1968, 1976) and placing some modest res-

trictions on the form of r and H it appears possible to formally establish that
the two systems differ by an 0 (e) error which, of course, implies that the two

systems (1)-(3) and (4)-(8), are identical as c-.0. The addition of terms involving

IV'(pou) insure that the discretized version of the advection terms is conser-

"vative (up to time truncation errors) and Lions (1972) has shown that these

terms can be added without jeopardizing the accuracy of the method as long as

e is sufficiently small. The implication of these terms has been assessed in one

aspect of the work initiated under the current research effort Lee, Gresho,

Chan, Sani and Culien (1981)). It was found that the GFE, or the PGFE, method

is relatively insensitive (compared to a FD method) to the inclusion of these

b )q
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terms to obtain a flux divergence form of the equations; however, the computa-

tion of derived quantities can be greatly effected (Gresho, Lee and Sani (1981))

and hence we routinely employ the flux divergence form.

The PGFE method utilized in our current algorithm leads to a formulation

in which the nodal pressure variables do not explicitly appear -- a cost effective

version of the general technique. It is noteworthy that our implementation

does not formally replace p before discretizing via the GFE which, as is well-

known, generates a "penalty term", -V(V-u) which must be "underintegrated"

-when discretized by Galerkin's method, but directly discretizes the perturbed

continuum equations via GFE using a C-1 finite element pressure representa-

tion. The latter results in a discretized approximation of the perturbed con-

tinuity equation which can be solved for nodal pressures at element level, a

very efficient process. Whenever the nodal pressures within an element are

desired they can be obtained by appropriate post-processing of the nodal velo-

cities associated with the element. This PGFE method is referred to as a "con-

sistent" penalty technique and its implementation and advantages are dis-

cussed in Engelman. Sani, Gresho and Bercovier (1981).

In the implementation of the scheme the approximate solution (up) is

represented in the form

N

Jul Jul

The finite element basis set j(x)3 ('j(z)j) is nonzero only locally over a few

elements (an element), i.e., is of local support, and gj (#j) is unity at node j and

* zero at other nodes. (In certain cases it is convenient to relax the latter pro-

perty for *j.) The basis j(z)j are required to be at least Co and the pressure

basis |j~(z)j is required to be C' for efficient implementation of the tech-

nique. Both these choices are compatible with the weak form of the equations
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associated with our Calerkin formulation which leads to a set of coupled first

order ordinary differential equation of the form

du 1M -+ ( )Bu + u + A(u)ufb ()

in which the matrices are sparse and usually banded but, in general, the

bandwidths are much larlarger than the corresponding system generated by a

regular finite difference stencil. This property implies that for the PGFEM to be

competitive with a FD method fewer nodal unknowns must be used to achieve a

specified accuracy and efficient storage and solution techniques must be util-

ized. The current state of GFEM (or PGFEM) development is such that very few

documented comparisons between the GFEM and FD schemes are available in

the literature but some preliminary coarse mesh comparisons of the schemes in

simulating flow and advection-diffusion were encouraging (Gresho, Lee and Sani

(1980)). The cost-effectiveness is important and an area of current research;

however, robustness is also a very important attribute and a recent test prob-

lem (de Vahl Davis and Jones (1981)) points out the superiority of Galerkin fin-

ite element techniques in this regard.

The appearance of the non-diagonal mass matrix N in (8) implies the

implicit character of the technique; in non-penalty Galerkin finite element

techniques a so-called lumped version which replaces N by a diagonal matrix

1can often be effectively used but here with (-)>>l an explicit scheme is inap-

propriate because of very stringent stability limitations. Le.. At-O(r) and typi-

cally e-10 - 0 - 10 - 6. In fact, there is a false transient induced by the method (a

ramification of the singularity of B and smallness of c) which must be dealt with

properly. These points are discussed in more detail in the Summary of Results

Section.

iI
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SUMMARY OF RESULTS

The emphasis in the program from its inception has been one of develop-

ment coordinated with theory. Our initial study focused firstly, on understand-

ing and implementing the penalty technique and secondly, on the ability of the

technique to generate accurate solutions to difficult problems. During the

course of the study detailed investigations were carried out on (1) spurious

pressures and consistent penalty in simulation of incompressible media; (2) the

"false transient" associated with the consistent penalty technique and the

design of a variable step time integration with local error control to cope with

this problem in a cost-effective manner; (3) the generation and evaluation of

new elements; (4) the derivation of "consistently" derived normals on the boun-

dary of a computational domain which is represented in the GFE method by a

C0 representation; (5) initial studies of turbulence parameterization; (5) the

development of pre- and post- processing techniques; (7) benchmark simula-

tions assessing and illustrating features of the technique. Since these studies

have formed the basis of the published manuscripts cited in the Publications

Section and are readily available, only the highlights of certain aspects are

presented here.

1. Spurious Pressures and Consistent Penalty formulation

Discretized approximations to the incompressible Navier-Stokes equations,

in the primitive variable (velocity-pressure) formulation, especially when gen-

erated via the Galerkin finite element method (GFEM), have been plagued with

confusion regarding the 'appropriate' workable combinations of velocity and

pressure approximations. Early on it was discovered by Hood and Taylor (1973)

that equal-order Interpolation on conforming quadrilateral elements, wherein

the same basis functions are used for representing velocity and pressure,

causes difficulty in the pressure solution. They obtained better results when

• I --- --



using mixed interpolation (the basis functions for pressure were one order

lower than those for velocity), and suggested an explanation in the form of

"balancing residuals" from momentum and continuity equations. Their expla-

nation, although intuitively appealing, was judged inadequate by Olson and

Tuann (1978) who explained the results in terms of the eigenvalues of a single

element (equal interpolation always generated one or more eigenvectors which

contained only pressure and corresponded to zero eigenvalues; they claimed

that these were spurious and were the cause of the failure).

Even when mixed interpolation is employed, however, there are cases

where numerical difficulties are encountered. In particular, the simplest possi-

ble approximation employs piecewise linear approximation for velocity (bilinear

on quadrilaterals) and piecewise constant approximation for pressure. This ele-

ment has been found to work well in some cases and poorly in others; in solid

mechanics, see Argyris et al (1974) and Nagtegaal, Parks and Rice (1974). and in

fluid mechanics, see Fabayo (1977). Huyakorn et &1 (1978). Hughes, Liu and

Brooks, (1979), and Lee, Gresho and Sani (1979). For certain combinations of

boundary conditions and element distributions over a domain, the solutions

display acceptable velocities but totally spurious pressures; the pressures are

afflicted with the "checkerboard syndrome," wherein they display oscillations

which are frequently of one sign on all 'black' squares and of the opposite sign

on all 'red' squares. These pressure patterns have also been encountered using

certain finite difference discretization techniques (Fortin (1972). Pracht and

Mackbill (1978) so that the affliction is not intrinsic to GFEM formulations; for

example, Chorin (1969) has encountered four spurious pressure patterns when

solving a consistently centered difference approximation to the Navier-Stokes

equations in two-dimensions (eight in 3-D). Finally, similar behavior can also

occur using higher-order elements; e.g. the quadrilateral element with biqua-

V " -- .. * ' -
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dratic velocity (9-node) and bilinear pressure with nodes at the 2 x 2 Gauss

points can display a checkerboard syndrome.

In the related penalty method ( PGFEM ) which is of interest herein, the

solenoidal constraint on the velocity field is slightly weakened, to p = - Vu.,

where = () is the penalty parameter. The results from the penalty approxi-

mation will be close to those using (1b) if the following inequalities are satisfied:

a< <,u/ X< <1, where e is the "unit roundoff level" of the computer; for example,

on our CDC-720, eflO- 4 and the penalty method 'works well' for

105 < XIIA < m109. With perfect arithmetic (a = 0), the penalty results would

converge to those from (1) as X->-. For large but finite X, the results should

typically differ by 0(1/A); actually, we usually observe S6 digits of agreement

for iO < A< 108. Since the pressures obtained from the penalty method can

also be plagued with the checkerboard syndrome, it is appropriate to consider

It also.

It is shown in Sani et al (1981 a, b) that the spurious pressures are ramifi-

cations of non-physical elements in the null space of the discretized pradient

operator, i.e., solution to the GFEM discretized form of (4) - (5) is of the form

(up) = (0$) where p is not a constant vector. The consequences and filtering

of these spurious pressures on regular as well as isoparametric meshes is dis-

cussed in the above references. As alluded to above the penalty method advo-

cated herein is theoreLically devoid of spurious pressures but, in fact, finite

precision numerical simulations using certain elements can exhibit oscillations

but usually of very small amplitude. If desired these oscillations may also be fil-

tered by techniques alluded to above. However, in most cases one can select

velocity-pressure approximations which do not exhibit such spurious pressures,

and for example, in 2D the biquadratic velocity-linear pressure interpolant

which we reported in Engelman et al (1982) appears to be an optimal

I *1
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combination.

An example comparing "filtered pressures" from a biquadratic C* velocity -

linear C-1 pressure element mixed mode simulation with the unfiltered pres-

lures from the consistent penalty approach advocated herein using the same

element pair as well as a bilinear C* velocity - piecewise constant C- 1 pressure

element is illustrated in Figure 1.

'~~ '21lj

.773 X 2":

Ji,

MA2 02
I 114 .011

I i0? 63 l7 0O

r ai
U U I1 - gl21

Fig. 1. Pressure From

A Driven Cavity Experiment

Since the mesh is symmetric, and the "penalty" pressures satisfy fp' = 0
n

only one-half of the pressures are displayed; the pressures at the Gauss points

in each element shown on the left side are the negative of those printed on the

right side. For the mixed interpolation case, the spurious pressure was first fil-

tered, then the hydrostatic level was adjusted to agree with that from the

penalty case. The first entry at each "node" is that from mixed interpolation;

the second entry is the 9-node penalty pressure, and the bottom entry is the

4-node penalty pressure.

It is apparent in Figure 1 that all pressures look fairly reasonable in the

I- I
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high pressure region and, considering the coarseness of the mesh, agree quite

well with each other. The differences show up in the low pressure region

wherein a "lingering local pressure oscillation is present in both penalty

results. Finally, as mentioned earlier, if the 9-node penalty pressures are fil-

tered, the resulting pressures agree with the filtered mixed interpolation pres-

sures to ;uO(1/A) and are the physical pressures in the sense that they are the

only ones "seen" in the momentum equations. The latter pressure would have

been obtained urithout filtering by employing a linear C-1 pressure interpolant

initially - a ramification of the optimality of this element.

A detailed theoretical discussion of the filtering schemes as well as addi-

tional numerical examples are presented in Lee. Gresho and Sani (1979); more-

over, a detailed discussion of the Galerkin-fnite element penalty method is

presented. It is noteworthy that the implementation of the technique herein is

via the "consistent penalty method" and not the popular under-integration

implementation most often employed in the engineering literature. While the

two techniques may be equivalent on a rectangular mesh there can be signifi-

cant differences on isoparametric meshes composed of generalized quadrila-

terals. The latter is illustrated in Table 1, detailed in Engelman, Sani, Gresho

and Bercovier (1982) and represented an important contribution of our initial

investigation. One of the benchmark simulations used in generating a com-

parison of the methods was a "colliding flow". In this flow, fluids flow from +Y_

and -y. to collide at y = 0. The solution over the entire x-y plane is

=. -X

C
P=- 2--P(=

The region 0zxsl,0!y!91 was modeled with symmetry planes (zero normal velo-

city and tangential stress) prescribed along x = 0 and y = 0 and the exact solu-

[!0-
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t.ion along z = 1 and y = 1. The parameters used were C = 4. density p = 1 and

viscosity A = .0667.

The approximate solution to each problem was obtained using both the

reduced integration and the consistent construction of the penalty matrix for

prQj and peP, on three different meshes. The meshes were: a regular BxB

mesh of nine node squares, a 6x6 mesh of irregular quadrilaterials, and a 6x8

mesh of curved isoparametric elements. The isoparametric mesh was generated

by moving each mid-side node inwards or outwards a distance of 5% of the ele-

ment width. The results of the simulation are presented in Table 1. They are in

complete agreement with the theoretical predictions; that is, on both the regu-

lar and distorted quadrilateral meshes both the reduced and consistent con-

structions of the penalty matrices give essentially identical solution errors. It

is only on the curved isoparametric meshes that the differences between the

reduced and consistent formulations manifest themselves. Here we see a large

error in the pressure solution when reduced integration is used which

decreases markedly when a consistent construction is employed. Only the

results for the isoparametric mesh are reported in Table 1. as the regular and

quadrilateral meshes gave nearly identical errors for all three formulations.

- ' ,. I
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Mesh Pressure Rel. Error Rel. Error
Formulation Velocity Pressure

Isoparametric Reduced Integration .05057 .02384

Elements P 6 Q I

Consistent p v Q 1  .03185 .02129

Consistent p r P1  .01876 .01601

Table 1: 2-D Colliding Flow Problem

2. False Transient Associated With The Penalty Technique.

The penalty method used in our small scale atmospheric model weakens

the solenoidal constraint (1) to the weaker one (4). As a consequence, the

infinite speed of propagation of a pressure signal in an incompressible fluid is

replaced by an O(A) "diffusive" speed of propagation - a property which can lead

to a non-physical transient. Here X-1/r and e< <1. Since the penalty parame-

ter is large, the initial nonphysical transient is fast, occurring on a time scale of

0(1/k), and reflects the slight compressibility inherent in the weakened

solenoidal constraint. While the analogy with a "special" slightly incompressible

fluid has been noted by others, it appears that the associated non-physical

transient has received little attention in the literature. In Sani et al (1981c)

attention focused on the existence, characterization and remedy of the initial

non-physical portion of the transient associated with a well-posed (in the

incompressible sense) problem and also illustrate the physically uninteresting

transient associated with an ill-posed problem. The nature of the false tran-

sient can be demonstrated by considering the development of a Poisieulle flow.

, - -. - - I
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Using the mesh and boundary conditions shown in Figure 2 and starting with

the fluid at rest, i.e.. u = v = a. then the time histories shown in Figure 3 are

obtained, The curves labeled "mixed" are obtained using the solenoidal con-

straint (1) and can be considered as the exact physical behavior. It is clear

that a rapid. non-physical penalty transient occurs on a time scale of 0(C) after

which the penalty methods tracks the physical transient.

f,=v=O

018 301 P2O

0.8 1 ..

- '59"5329

f 0

0.4 7

~X

Fig. 2. Mesh and Boundary Conditions

10-4 - 100

10"5 m (M ixed) 0

100 P-\
10-5 10

(Mixed) ---

10-6 - 5 7 1O/ 1
U 6 U 0

(Mixed)-3010"7
1 10 t  10-9 10-8 10-7  10-6  10-5

t

Fig. 3. Selected Time Histories
During Penalty Transient
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Since the penalty parameter. , is very large, it can be shown that an expli-

cit time integration algorithm leads to time steps (At) of 0(1/X) for stability -

an unacceptable restriction imposed by the non-physical part of the transient.

Even implicit algorithms which are non-dissipative can be severely limited in

time step size; for example, if the trapezoid rule algorithm is chosen, undamped

oscillations will occur if XAt is much greater than unity. Consequently, a time

integrator was designed with the capability of starting out in a constant, or

variable, At backward Euler (BE) mode (an implicit, first-order, dissipative

scheme) and switching to a variable At BE mode or trapezoid (TR) mode (an

implicit, second-order, non-dissipative scheme) after a preassigned number of

time steps. Using this algorithm one can either follow the entire transient to

within a prescribed local time truncation accuracy via a variable step method

exclusively, or follow only the physical part of the transient by initially taking a

few BE steps at a constant At>>(i/ X) and then switching to variable step BE or

TR for efficiency. The initial non-physical portion of the transient appears as

"high frequency signals" to the BE scheme and is therefore quickly damped by

the numerical diffusion associated with this scheme. Consequently, this stable

*time integration strategy can over-look the initial non-physical transient while

using reasonable-sized time steps, i.e., time steps not 0(r), and can be up to

second order accurate in the remaining (physical) portion of the transient

while automatically varying At. based solely on temporal accuracy require-

ments. The details are reported in Sani et al (1981c) and the basic ideas can be

exploited by others in other applications.

8. Consistently Derived Boundary Normals

It is often required to specify normal, or tangential, velocities along the

boundary of a domain, or equivalently along the element boundaries forming

the finite element covering of a domain. In general, these boundaries are not

:.4
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along level surfaces of the coordinate system for the problem For example, in

modeling flows with free surfaces such as the ocean-atmosphere interaction or

in raising the computational domain "off the ground" when assuming the lowest

level flow is well represented by a locally equilibrium log-linear profile. We

addressed this issue in Engelman, Sani and Gresho (1982) where a detailed

analysis is presented and it is shown that if the normal vector computation is

not done in a manner consistent with the incompressibility constraint, errone-

ous results, especially in pressure, can result.

4. Outflow Boundary Conditions

During our study it was demonstrated mainly by numerical experiment

that appropriate computational outflow boundary conditions for neutral and

special stratified flows could be obtained by using the "natural" boundary con-

ditions associated with the Galerkin formulation, i.e., constant normal, fn, and

in some cases tangential fl, stress on an outflow boundary. (Here fn = nn:7 and

ft -tnT.) While these conditions are not generally physically correct for the

continuum system (outflow boundaries imposed by the requirements of a

bounded computational domain are unphysical and apriori the "correct" boun-

dary conditions are unknown) benchmark numerical experiments indicate that

such boundary conditions lead to accurate interior numerical results especially

in advection dominated cases. For example, in the simulation of the shedding

of a von Karmen vortex street at Re = 110 shown in Figure 4, the outflow boun-

dary conditions for this neutral flow were f, = 0. ft = 0. Notice that the vortex

street leaves the computational domain without noticeable mesh effects.

t" '-... 5 "44!
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Fig. 4. Relative Streamlines As Seen
By An Observer Moving With
The Nominal Fluid Velocity

It is also noteworthy that the weak form of the boundary constraint f, = const.

is not enforced locally but in a least square error sense over the outflow boun-

daryLonly in the limit of zero mesh size is the constraint imposed locally. It is

the latter feature that makes this natural boundary condition which allows u

and p to be computed on the outflow boundary a good computational outflow

boundary condition. The variation of f, and -p on the outflow boundary of the

vortex shedding numerical experiment at a specific time is displayed in Figure

5.

h .F
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a

Fig. 5. fn and -p On Outflow Boundary
At f = 536.49

It is noteworthy that fn-p since on this outflow boundary

5u
fn = -p + 2A

which shows that even at Re = 110 the viscous effects at the outflow boundary

are small and also that in a strong sense fn A const. which would be inappropri-

ate physically.

While the solution to the problem of appropriate outflow boundary condi-

tions appears to be reasonably resolved for neutral flows with small Coriolis

effects, the solution in the case of many stratified flows and/or flows with signi-

ficant Coriolis effects requires a more careful analysis. It is easily demonstrated

by exact solutions as well as numerical experiments that setting, for example,

f, = const., in such flows leads to the solution of a different problem than origi-

nally desired. The latter is a ramification of both velocity and pressure field

contributions in the normal stress f,. coupled with the occurrence on the out-

flow boundary of a significant, apriori unknown, pressure contribution due

mainly to hydrostatic pressure variations in a stratified flow and/or pressure

variations due to Coriolis effects in a rotating flow. (Centrifugal can be handled

i
t
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by a redefinition of the pressure variable to include such effects.)

The solution to this outflow boundary condition problem is being dealt with

by using a natural boundary of the form

X - cor.t.

which again is not physically correct pointwise but is only satisfied in a weak

sense and leads to an acceptable computational outflow boundary condition

except in the case of a piecewise constant pressure interpolant where a special

f, updating procedure must be used. While the formal implementation of the

boundary condition is straightforward there are certain theoretical as well as

computational question which must be addressed in order that a firm basis for

its use is established; these issues are addressed in Engelman, Sani and Gresho

(1982) and form the basis of some ongoing research. Its use will be illustrated

subsequently in one of the examples in the Benchmark Simulation Section.

5. Benchmark Simulations

During the course of this study a number of numerical experiments were

performed in order to check the basic algorithm as well as to judge the viability,

effectiveness and robustness of new techniques during the course of their

implementation and development. These simulations varied from the simplest

for which the algorithm was capable of generating an exact solution to compli-

cated transient stratified flows in complex domains. The results of some of

these numerical experiments are presented here in order to illustrate the

capability of the algorithm as well as some of the pre- and post-processing

techniques which were either developed during this study or scavenged from

existing algorithms.

In all the following examples illustrating the capabilities of the algorithm a

C° biquadratic velocity- C-1 linear pressure element, i.e., interpolation, is

7AV
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employed in the PGFEM using r 10-6. Isoparametric elements were used to

grade the mesh and to track the complex geometry. (Each element appearing

In the following figures illustrating the mesh contain 18 velocity degrees of

freedom and 3 pressure degrees of freedom.)

1. Steady. Mlow Neutral Flow Over A Circular Trench

Fig. Sa. Mesh

* Fig. 8b. Velocity Vectors

Fig. 6c. Streamlines
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Fig. 8d. Isobars

The noteworthy features here are (i) the ability to easily track geometry

and grade the mesh to track the physics if known apriori; (ii) the quality of the

solution in that it accurately predicts the recirculation zone in the bottom of

the trench, a feature whose existence can be predicted theoretically and (iii)

the fact that the pressure sigularities which theoretically exist at the points of

intersection of the trench with the planar region and which are not approxi-

mated very accurately by the mesh being used only. effect the numerical solu-

tion in the neighborhood of the singularities.

q.

a'
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2. Steady. Stably Stratified Flow Over Topography

4 *1 . . , , , _ i
2

Fig. 7. Owens Valley Flow

This example illustrates a steady stratified flow with a Froude number, i.e.,

ratio of inertial to gravitational forces, of 4.5. For simplicity the simulation was

done specifying a constant ground temperature and an inlet temperature pro-

file which increased linearly with height and a specified inlet velocity field so

that a comparison could be made with some simulations done previously by the

group at Lawrence Livermore National Laboratory. The comparison was essen-

tially exact and in both cases such features as mountain lee waves and up-slope

winds are evident.

8. Transient Neutral and StraUfled Flow About a Cylindrical Object

- This flow was chosen because of the numer of experimental observations

available in the literature, at least in the neutral flow case, for comparison. The

details of the mesh and boundary conditions are displayed in Figure 1. (Note

that the outflow bounding conditions illustrated are those appropriate to the

I )neutral flow case.)

I.
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122

1O53# IiiillllJ l I 0

o 4 " 12 ,6 20
K

a. Overall doma mesh boundaly coa ditions.

b. Details of mesh mear cylinda; &180 &bow & e the modes for a
typical element.

Fig. 8. Mesh and Boundary Conditions

The numerical experiment started with the zero flow initially and the velocity

field evolves to one at a Reynold's number of P 100 (based on cylinder diame-

ter) with a period shedding of a vortice, first from the top and then from the

bottom of the cylinder. That is. a von Karmen vortex street develops behind the

cylinder and flows out the computational domain. These features are illus-

trated in Figures 10-14. These predictions are in close agreement with observa-

tions made in physical experiments.

-f.75
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- ma m

Fig. 11. Time History of
Velocity At Node B

During Shedding Cycle

The latter is also illustrated in Figures (12) - (13) where streaklines computed

over a numerically simulated vortex shedding cycle (Figure 12) can be com-

pared to those experimentally observed at a Reynolds number of 102, (Figure

13).
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Fig. 13. Experimentally Observed Streakline

In the comparison one can focus on the "eye patterns" as they are swept down-

stream. The downstream movement of these patterns away from the centerline

obvious in both the numerical and physical experiments and overall features

compare very well. (The algorithm for computing the streaklines was developed

during the course of our study and has been an aid in understanding some

features of the flows as well as a starting point for tracking some neutrally

buoyant particles.)

Finally to test the new outflow boundary conditions as well as to gain some

insight into a stratified flow about an object the temperature of the cylinder

was raised above that of the entering stream and the top and bottom boun-

daries were insulated. In our initial experiment the heating was minimal. The

overall flow structure didn't change much except now the vortices leaving the

cylinder are more asymmetric and have a tendency to raise during their down-

stream course. Moreover, the temperature field exhibits temporal oscillations

as displayed in Figure 14.
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Fig. 14. Time History of Temperature
At Nodes B. C and D During

Shedding Cycle. i
The new outflow boundary condition appeared to perform satisfactory with

regard to the velocity field calculations but some difficulty was encountered in

recovering an accurate pressure field; the latter has stimulated some ongoing

research in this area.

'I 
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